Integrability of Subdifferentials of Directionally Lipschitz Functions

نویسنده

  • NADIA ZLATEVA
چکیده

Using a quantitative version of the subdifferential characterization of directionally Lipschitz functions, we study the integrability of subdifferentials of such functions over arbitrary Banach space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

^-representation of Subdifferentials of Directionally Lipschitz Functions

Subdifferentials of convex functions and some regular functions f are expressed in terms of limiting gradients at points in a given dense subset of dorn Vf.

متن کامل

Michel-Penot subdifferential and Lagrange multiplier rule

-In this paper, we investigate some properties of Michel Penot subdifferentials of locally Lipschitz functions and establish Lagrange multiplier rule in terms of Michel-Penot subdifferentials for nonsmooth mathematical programming problem. Key-Words: Nonsmooth optimization; approximate subdifferentials; generalized gradient; Michel Penot subdifferential; Banach space.

متن کامل

Partial second-order subdifferentials of -prox-regular functions

Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2  functions. The class of prox-regular functions covers all convex functions, lower C2  functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...

متن کامل

Characterization of Lipschitz Continuous Difference of Convex Functions

We give a necessary and sufficient condition for a difference of convex (DC, for short) functions, defined on a normed space, to be Lipschitz continuous. Our criterion relies on the intersection of the ε-subdifferentials of the involved functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005